
Foundation for successful digital transformation

Application Factory

Jaroslaw Stakun
RHCA, Principal Solution Architect
jstakun@redhat.com

MigrationPresent

Apps: Software Infrastructure landscape

OCP Ready Apps

CNV Ready Apps

Other Apps

RHV Ready Apps

Container Apps

KVM Apps

Container Apps on
OCP

Containerized KVM on
OCP

 Virtualization Virtualization + Bare Metal Bare Metal

containerization

containerizationCNV Migration

RHV Migration

OpenShift
(OCP)

OpenShift
Virt (CNV)

Virt, BM

KVM
(RHV, OSP)

CNV Migration

Re
d

H
at

 O
pe

nS
hi

ft
 /

 K
ub

er
ne

te
s

/
Q

ua
y

/
St

ac
kR

ox
 /

 U
nl

im
ite

d
R

H
EL

 /
 S

at
el

lit
e

/
A

ns
ib

le
 /

C

on
ta

in
er

 N
at

iv
e

St
or

ag
e

containerization

OCP: Openshift Container Platform, CNV: Container Native Virtualization, RHV: Red Hat Virtualization, OSP: OpenStack

cost
agility

Legacy workloads

TargetModernization

2

Application modernization yields business value
Replatform, refactor, replace, integrate

3

more...

Agile delivery

Reduce Cost

Gain Cloud
Efficiencies

Replace with
SaaS

Improve
usability

Enhance
functionality

A
pp

lic
at

io
n

Po
rt

fo
lio

A

ss
es

sm
en

t

Refactor
monolith to

microservices

Add / Enhance
functionality as
microservices

Expose APIs

Integrate SaaS

Replace as
microservices
or functions

Replatform to a
cloud-native
app runtime

Containers & PaaS

CICD Automation

Service Mesh &
Serverless

Cloud-enabled
VMs

P
riv

at
e

|
P

ub
lic

Existing App
Platforms

Modernization
Objectives

Modernization
Options

Modernization
Solutions

Deploy to
Any Cloud

Modernization
Targets

Cloud Native Development

What, how, and why
Application Migration Factory

APPLICATION MIGRATION FACTORY

6

Challenge Approach Benefits

Slow
Resource availability, subject matter expertise,
competing priorities

Speed
Migration process continually gets refined
making faster boilerplate migrations

Standardize
Experienced migration focused team brings
standardized approaches

Risky
Migrations can be very expensive with hard to
justify ROIs.

Flexibility
Captured metrics can help make informed
decisions on how to pivot priorities

Reevaluate Constantly
Each iteration has an exit plan

Realistic Roadmap
The devil is in the details. Broad based assessments
can only be so accurate

Predictability
These metrics, along with refined t-shirt sizing
enable increasingly intelligent decision making

Metrics based migration
Each iteration captures metrics based on size,
speed and performance

Business Value
How will migrating platforms add value to your
business units when their teams are not innovating

Modernization Capability
Build culture that embraces continuous
modernization and thought leadership

Dedicated Team of migration experts
A dedicated and experienced migration team
with process to build internal capabilities

APPLICATION MIGRATION FACTORY

7

Where do we start

Application Portfolio Assessment will assess a customer’s portfolio of applications resulting in application
categorization and prioritization. The categorization and prioritization are aligned to the company’s desired

infrastructure end state and built to assist the customer through the initial stages of their adoption of new platform.

Captures generic requirements
around application and general
principles on how they architect

their app.

An overarching
strategy is drafted to identify

objectives and address process,
tooling, and skill gaps with

measurable outcomes.

Navigate to
Application Portfolio

Assessment

A pre-sales activity to
better understand the
customer’s business

drivers, desired
outcomes, key

stakeholders, and
current state

Discover

Prove and pilot application
modernization effort based on
the Migration Decision. Build

backlog of application and
level of effort.

Demonstrate

High-levels options following portfolio assessment
APPLICATION MIGRATION FACTORY

8

retire

retain

replatform

refactor

rehost

No change

Delivery pipeline, ops tools and processes

Code fixes, new platform ops

Significant code changes,
architecture, and technology choices

Navigate &
Assess Rationalize Migration

decisions Plan ScaleProve Pilot

APPLICATION MIGRATION FACTORY

9

App Team 3...
Team Lead

Tech Lead

Team
Members

App Team 3...
Team Lead

Tech Lead

Team
Members

Enterprise
Architect

Program
Lead

Assessment
Lead

Red Hat
Architect

Business
Owners

Operations
Lead

App Team 3...
Team Lead

Tech Lead

Team
Members

Requirements
Challenges

Context

Patterns
Architecture

Mentoring

App Team 1
Team Lead

Tech Lead

Team
Members

Build Community

Program Team

Reference Architectures

Implementation Checklists

Lessons Learned

Recorded Demonstrations

Mob Problem Solving

Build Thought Leaders

Regular Cadence Presos

Enablement Content Continuous Collaboration

Architectural Review

App Team 2
Team Lead

Tech Lead

Team
Members

APPLICATION MIGRATION FACTORY

10

Continuously refine migration plan and build community

Continuous Discovery & Delivery = Continuous Learning

Analyze Metrics
and feedback

Reassess
Strategy

Assess
Design

Implement
Record Lessons
Learned

Test

Release

On-board
Team

Community
Giveback

Generate Ideas

Formulate
approach

Application
Deep Dive

Community
Problem Solving

Community
Modernization Guides

Empowered
Developers

FOUNDATIONS

DISCOVERY DEVELOPMENT

APPLICATION MIGRATION FACTORY

11

Characteristics
● Uses relevant frameworks
● Stateless
● Less than 10 endpoints
● Only integration protocol is HTTP
● Well defined integration tests
● Simple rehosting effort

Estimates
● 7~ days to refactor to non-production

environment per archetype
● 5~ days after initial archetype is proven

Small Application

Characteristics
● Mostly relevant frameworks
● Less than 20 endpoints
● Some integration testing defined
● May need some refactoring of underlying

libraries

Estimates
● 14~ days to refactor to non-production

environment per archetype
● 10~ days to refactor after initial archetype

is proven

Medium Application

Characteristics
● Older frameworks that need replacement
● More than 20 endpoints /
● Some integration testing defined
● May need some refactoring of underlying

libraries
● Requires coordination with several

integrating services

Estimates
● More than 14 days to refactor to

non-production environment

Large Application

T-Shirt Sizing for Initial Estimations
As migrations occur, lessons are learned and level of estimates are adjusted

* An application in this context is a single deployable artifact like a Java war file.

Application Migration Factory
High-level task list

APPLICATION MIGRATION FACTORY

12

Migration Architectural design:
• Lead architectural discovery and design workshops with application SME to validate migration

assumptions and solidify approach
• Develop and validate testing strategy

Develop, Deploy and Feedback:
• Containerize application and/or create deployment descriptor for running on OpenShift
• Integrate build process into existing CI/CD pipeline which deploys to OpenShift
• Test application deployment on the Openshift platform and ensure it can gracefully handle pod

restarts
• Create and document repeatable strategies for future migrations
• Continuously refine migration strategy with lessons learned

Enable:
• Provide side-by-side mentoring with development teams
• Foster community for application modernization through workshops, demos and building channels

for better cross-team communication
• Deliver and review architectural and operational documentation through each iteration

Modernization
tools & techniques

Rehost virtual
machines to

KubeVirt

Rehost apps
between

Kubernetes
clusters

Replatform
applications to

Kubernetes

Refactor
applications for

Kubernetes

Measure software
delivery

performance

Konveyor Projects

FORKLIFT
rehost

replatform

refactor

retain retire

CRANE

Existing
Applications &
Infrastructure

Migrate applications between
Kubernetes clusters

Migrate virtual machines to
Kubernetes (KubeVirt)

MOVE2KUBE
Migrate applications

from other platforms
such as Cloud Foundry

or Swarm to Kubernetes

PELORUS
Measure the impact of

changes on software delivery
performance

TACKLE
repurchase

Discover, Assess, and Analyze
Applications for
containerization

Application refactoring
recommendations

Konveyor Community Projects and Red Hat Supported Tools

TACKLE

Migration Toolkit for
Applications

Migration Toolkit for
Virtualization

Migration Toolkit for
Containers

Assess Application Suitability for Containers
Dialogue based assessment across people, process, and
technology

Accounts for various aspects
Proposed actions, effort estimates, and business criticality

Reports generated
Cloud Readiness Assessment, Application Dependencies and
Adoption plan, Identified risks

Application Portfolio Analysis
Pathfinder

https://github.com/konveyor/tackle-pathfinder
17

https://github.com/konveyor/tackle-pathfinder

Port applications to containers with Binary
Builds

Minimizes risk of development lifecycle by removing
disparity between environments

Empowers Developers to have more control over their
deployments

Start small, gain experience, then make incremental changes

Rehost Technical Path
Move the application with as few changes as possible

FROM jboss-eap-7:latest
COPY MyApp.war /samplePath/myApp.war
CMD $STI_SCRIPTS_PATH/run

Create a build for your application

$ oc new-build --strategy docker --binary --docker-image wildfly:latest --name myapp

Start a binary build using the local directories content

$ oc start-build myapp --from-dir . --follow

Deploy the application using new-app, and expose the service

$ oc new-app myapp

$ oc expose svc/myapp

On-prem

Remote cloud

18

Supported Paths
OpenShift 3.7 to 4.latest
OpenShift 4.x to 4.x

Operator Based
Available in OperatorHub

Types of Migrations Supported
Swing and Copy supported

Container Migration
Migration Toolkit for Containers

19

Rehost Technical Path
Take additional steps to get the most out of your rehosted application

Externalize environment and application configuration

The only difference between your SDLC environments should be size and
configuration.

Automate your delivery pipeline

Each step of deployment should be scripted with as little manual
intervention as possible for both env staging and app deployment

But what if my application can’t run on a container...?

20

Infra As Code for all environments
and applications, versioned in GIT
and automated through CI/CD
pipelines

21

Enabling OpenShift Virtualization in a OpenShift cluster it

allows users to deploy virtual machines in their projects

side-by-side with their containerized applications.

OpenShift can deploy applications in virtual machines

according to the same rules as applications running in

containers.

But what if my application requires a Virtual Machine?

VMs Containers

Red Hat OpenShift Container Platform

Red Hat Enterprise Linux CoreOS

Physical machine

OpenShift Virtualization

OpenShift 4.5 introduced the general availability of OpenShift Virtualization.

Isn’t a Virtual Machine different from a container?

22

Infrastructure

Operating System

App 1 App 3App 2

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Infrastructure

Virtualization Containerization

App 1 App 3App 2

Technical facts:
● Containers are methods of process isolation
● A Virtual Machine is a process

Running a Virtual Machine inside a container platform is
equal to running a Virtual Machine as a container.

RHEL CoreOS

OpenShift

Physical Machine

VM pod App pod

+ =

Red Hat OpenShift +
OpenShift Virtualization

Migration Toolkit for Virtualization (MTV)
 Migration at scale of virtual machines to OpenShift

Migration Analytics
Detect potential compatibility issues before
migrating to ensure a successful migration

Mass Migration of VMs
Migrate workloads at scale to OpenShift
● Provide source and destination credentials
● Map infrastructure
● Create migration plans

23

Replatform Technical Path
Change the underlying platform (runtime, framework, middleware, operating system)

Enhance security with vendor container images
Build from supported images where possible - offload base
image CVE and security management to provider

Speed up delivery with container-ready middleware
Don’t build your own application server image

Be methodical when tackling your portfolio
Categorize your use-cases tackling the broadest reaching
hurdles first to gain momentum.

Keep your business logic untouched, but update
your commodity middleware to Open Source

24

Migration Toolkit for Applications

● Review Java Apps - review source code or
decompile binaries and find ways to make them
more JEE compliant, and container friendly.

● OpenJDK, Container and Linux rules -
discover fixes to be applied to your app to
increase its mobility

● Camel 2 to 3 Rules - review your Camel 2 rules
and find out how to convert them to Camel 3
(more container friendly).

● Web,CLI, Maven and IDE - use the tool in any
your preferred context, from CI/CD pipelines ,
to maven builds and in within your development
environment. Easy to deploy on OpenShift.

red.ht/mta
25

https://red.ht/mta

Refactor Technical Path
Redesign code to take advantage of the new platform (extend, strangle, rewrite).

Modularize and decouple high valued services
Monoliths aren’t always bad, but should be designed in a
modular fashion to enable future decoupling.

Apply Modern API Frameworks
Use a API facade to expose and manage services

Invest Time in Automated Testing
Your team is only as fast as it can test. Make Gherkin a
common language between Business, Dev, QA

Leverage Modern Runtimes and Frameworks
Async and serverless patterns along with a service mesh can
improve performance, security and reduce complexity

26

SVC
C

API Gateway

SVC
A

SVC
B

SVC
D

A
U

T
H

O
R

IZ
AT

IO
N

Big Ball of Mud Legacy

Monolithic App evolution

Do it incrementally

27

WEB UI

MOD
A

MOD
B

MOD
C

MOD
D

DATA ACCESS

AUTHORIZATION

Modularize your “big ball of mud”, then make decisions about decoupling

Modularize

Strongly enforce:

✓ Source Control
Modularity

✓ Build Modularity
✓ Code Modularity
✓ Data Modularity

Strangler pattern

https://www.redhat.com/architect/pros-and-cons-strangler-architecture-pattern

28

https://www.redhat.com/architect/pros-and-cons-strangler-architecture-pattern

MONOLITH

Let new features become new services

29

Instead of new modules, and continue replatforming

WEB UI

MOD
A

MOD
B

MOD
C

Integration

DATA ACCESS

AUTHORIZATION
API Gateway

SVC
D

SSO

Cache

Logging

Modernize

SVC
E

Continue to simplify and speed up the dev process

30

WEB UI

MOD
A

MOD
B

MOD
C

MOD
D

DATA ACCESS

AUTHORIZATION

SVC
C

API Gateway

SVC
A

SVC
B

SVC
D

Abstract more concerns away from the applications so dev teams can focus more on business logic

X SSO

Cache

Service Mesh

Logging

Modernize

SVC E

https://www.redhat.com/en/engage/devops-culture-practice-openshift-ebooks

https://www.redhat.com/en/engage/devops-culture-practice-openshift-ebooks

